

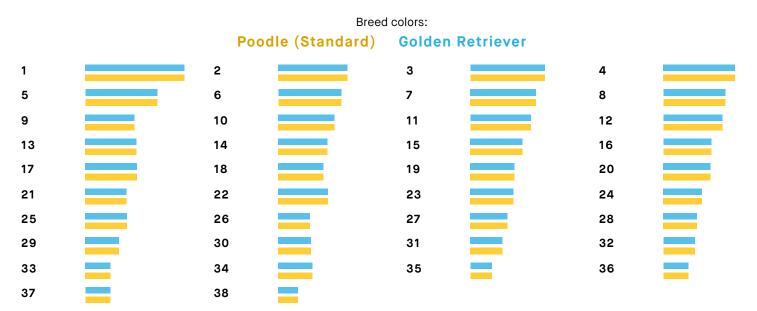
Test Date: May 19th, 2023

embk.me/benny2460

BREED MIX

Poodle (Standard) : 50.0%

GENETIC STATS

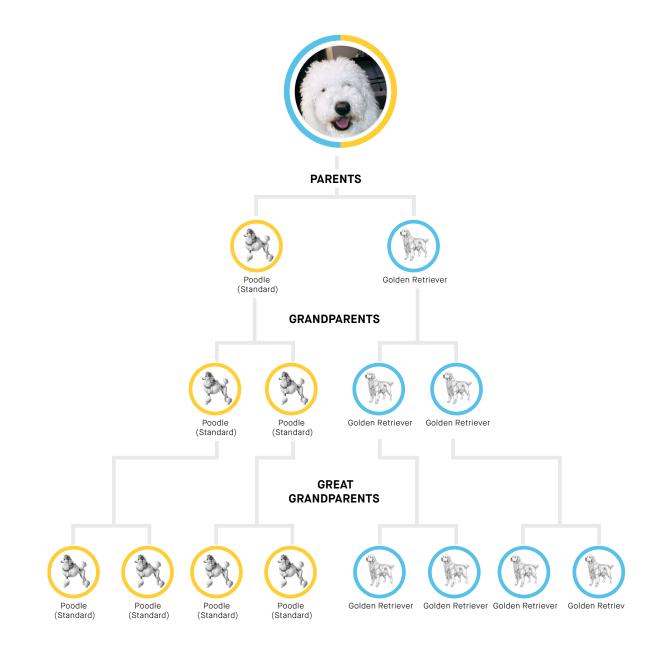

Wolfiness: 0.6 % **LOW** Predicted adult weight: **69 lbs** Life stage: **Young adult** Based on your dog's date of birth provided.

TEST DETAILS

Kit number: EM-10033412 Swab number: 31210901701802

BREED MIX BY CHROMOSOME

Our advanced test identifies from where Benny inherited every part of the chromosome pairs in his genome.



Fembark

Test Date: May 19th, 2023

embk.me/benny2460

FAMILY TREE

Fun Fact

From 1989 to 1991, John Suter raced a team of Poodles in the Iditarod. Although his teams placed in the back half of the pack, he managed to win \$2,000 in prize money before retiring his poodle team. The Iditarod has since changed its rules to specify that only northern dog breeds can compete. Test Date: May 19th, 2023

embk.me/benny2460

embark

POODLE (STANDARD)

The Standard Poodle is a popular, water-loving dog used for centuries as a bird dog and popular pet. Poodles were established in Germany by the 15th century. Oddly enough, they are the national dog breed of France, and they were the most popular breed of dog in the United States throughout the 1960s and 70s. They're still quite popular today, owing to their intelligence, trainability, and non-shedding coats. Although well-known for their fancy fur, they're one of the most intelligent breeds of dog and require a lot of exercise and stimulation.

RELATED BREEDS

(Miniature) Sibling breed

Maltese Cousin breed

Havanese Cousin breed

Bichon Frise Cousin breed

Registration:

Fun Fact

A Golden Retriever is also pictured in the Guinness Book of World's Records for "Most tennis balls held in mouth" (with 6).

Test Date: May 19th, 2023

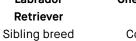
embk.me/benny2460

embark

GOLDEN RETRIEVER

The Golden Retriever was developed in the early 19th century as an ideal hunting companion, able to retrieve birds on both land and water in the marshy Scottish countryside. Their friendliness and intelligence makes the both a popular family pet and an excellent working dog, well suited for being a service dog, therapy dog or for search and rescue. The third most popular breed in the US, the American and Canadian Goldens are generally lankier and darker than their British counterparts. Their wavy, feathered topcoat is water resistant, their undercoat helps them with thermoregulation and both coats have a tendency for heavy seasonal shedding. Goldens need lots of exercise (especially when younger), and their love of play and water means their owners usually get a lot of exercise too! In 2013, the 100th anniversary of Britain's Golden Retriever Club, Goldens from around the world came made the pilgrimage to the breed's birthplace in Scotland, where 222 of them posed in a single record-breaking photo. At the same time, the Golden Retriever Lifetime Study was getting started in the United States, recruiting 3,000 Golden Retrievers for a lifetime study aimed at understanding how genetics, lifestyle and environment influences healthy aging and cancer risk in Goldens.

Chesapeake Bay Retriever Cousin breed


Newfoundland Cousin breed

Registration:

Flat-Coated

Retriever

Sibling breed

Labrador

Retriever

Rembark

RELATED BREEDS

Test Date: May 19th, 2023

embk.me/benny2460

MATERNAL LINE

Through Benny's mitochondrial DNA we can trace his mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: B1

B1 is the second most common maternal lineage in breeds of European or American origin. It is the female line of the majority of Golden Retrievers, Basset Hounds, and Shih Tzus, and about half of Beagles, Pekingese and Toy Poodles. This lineage is also somewhat common among village dogs that carry distinct ancestry from these breeds. We know this is a result of B1 dogs being common amongst the European dogs that their conquering owners brought around the world, because nowhere on earth is it a very common lineage in village dogs. It even enables us to trace the path of (human) colonization: Because most Bichons are B1 and Bichons are popular in Spanish culture, B1 is now fairly common among village dogs in Latin America.

HAPLOTYPE: B84

Part of the large B1 haplogroup, this haplotype occurs most frequently in Golden Retrievers, Beagles, and Staffordshire Terriers.

Test Date: May 19th, 2023

embk.me/benny2460

PATERNAL LINE

Through Benny's Y chromosome we can trace his father's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1a

Some of the wolves that became the original dogs in Central Asia around 15,000 years ago came from this long and distinguished line of male dogs. After domestication, they followed their humans from Asia to Europe and then didn't stop there. They took root in Europe, eventually becoming the dogs that founded the Vizsla breed 1,000 years ago. The Vizsla is a Central European hunting dog, and all male Vizslas descend from this line. During the Age of Exploration, like their owners, these pooches went by the philosophy, "Have sail, will travel!" From the windy plains of Patagonia to the snug and homey towns of the American Midwest, the beaches of a Pacific paradise, and the broad expanse of the Australian outback, these dogs followed their masters to the outposts of empires. Whether through good fortune or superior genetics, dogs from the A1a lineage traveled the globe and took root across the world. Now you find village dogs from this line frolicking on Polynesian beaches, hanging out in villages across the

HAPLOTYPE: H1a.38

Part of the A1a haplogroup, this haplotype occurs most frequently in mixed breed dogs.

Test Date: May 19th, 2023

embk.me/benny2460

TRAITS: BASE COAT COLOR

TRAIT	RESULT
Dark or Light Fur <i>E</i> (<i>Extension</i>) <i>Locus</i> <i>Gene: Melanocortin Receptor 1</i> (<i>MC1R</i>) Genetic Result: ee This gene helps determine whether a dog can produce dark (black or brown) hairs or lighter yellow or red	
hairs. Any result except for ee means that the dog can produce dark (black of brown) hairs of lighter yellow of red does not produce dark hairs at all, and will have lighter yellow or red hairs over their entire body.	Light colored fur (cream to red)
Did You Know? If a dog has a ee result then the fur's actual shade can range from a deep copper to yellow/gold to cream - the exact color cannot be predicted solely from this result, and will depend on other genetic factors.	
Dark brown pigment Cocoa Gene: HPS3 Genetic Result: NN	
Dogs with the coco genotype will produce dark brown pigment instead of black in both their hair and skin. Dogs with the Nco genotype will produce black pigment, but can pass the co variant on to their puppies. Dogs that have the coco genotype as well as the bb genotype at the B locus are generally a lighter brown than dogs that have the Bb or BB genotypes at the B locus. Did You Know? The co variant and the dark brown "cocoa" coat color have only been documented in French Bulldogs. Dogs with the cocoa coat color are sometimes born with light brown coats that darken as they reach maturity.	No impact on skin color
Red Pigment Intensity LINKAGE <i>I (Intensity) Loci</i> Genetic Result: Intermediate Red Pigmentation	
Intensity refers to the concentration of red pigment in the coat. Dogs with more densely concentrated (intense) pigment will be a deeper red, while dogs with less concentrated (dilute) pigment will be tan, yellow, cream, or white. Five locations in the dog genome explain approximately 70% of red pigmentation intensity variation across all dogs. Because the locations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.	Any pigmented fur likely yellow or tan
Did You Know? One of the genes that influences pigment intensity in dogs, TYR, is also responsible for intensity variation in domestic mice, cats, cattle, rabbits, and llamas. In dogs and humans, more genes are involved.	

Test Date: May 19th, 2023

embk.me/benny2460

Likely black colored

nose/feet

RESULT

TRAITS: BASE COAT COLOR (CONTINUED)

TRAIT

Brown or Black Pigment | B (Brown) Locus | Gene: Tyrosinase Related Protein 1 (TYRP1) | Genetic Result: BB

This gene helps determine whether a dog produces brown or black pigments. Dogs with a **bb** result produce brown pigment instead of black in both their hair and skin, while dogs with a **Bb** or **BB** result produce black pigment. Dogs that have **ee** at the E (Extension) Locus and **bb** at this B (Brown) Locus are likely to have red or cream coats and brown noses, eye rims, and footpads, which is sometimes referred to as "Dudley Nose" in Labrador Retrievers.

Did You Know? "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red".

Color Dilution | D (Dilute) Locus | Gene: Melanophilin (MLPH) | Genetic Result: DD

This gene helps determine whether a dog has lighter "diluted" pigment. A dog with a **Dd** or **DD** result will not be dilute. A dog with a **dd** result will have all their black or brown pigment lightened ("diluted") to gray or light brown, and may lighten red pigment to cream. This affects their fur, skin, and sometimes eye color. The D locus result that we report is determined by three different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and the less common alleles known as "**d2**" and "**d3**". Dogs with two **d** alleles, regardless of which variant, are typically dilute.

Did You Know? There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Dilute dogs, especially in certain breeds, have a higher incidence of Color Dilution Alopecia which causes hair loss in some patches.

Test Date: May 19th, 2023

embk.me/benny2460

No impact on coat

No impact on coat

No dark fur anywhere

pattern

color

RESULT

TRAITS: COAT COLOR MODIFIERS

TRAIT

Hidden Patterning | K (Dominant Black) Locus | Gene: Canine Beta-Defensin 103 (CBD103) | Genetic Result: K^BK^B

This gene helps determine whether the dog has a black coat. Dogs with a **k**^y**k**^y result will show a coat color pattern based on the result they have at the A (Agouti) Locus. A **K**^B**K**^B or **K**^B**k**^y result means the dog is dominant black, which overrides the fur pattern that would otherwise be determined by the A (Agouti) Locus. These dogs will usually have solid black or brown coats, or if they have **ee** at the E (Extension) Locus then red/cream coats, regardless of their result at the A (Agouti) Locus. Dogs who test as **K**^B**k**^y may be brindle rather than black or brown.

Did You Know? Even if a dog is "dominant black" several other genes could still impact the dog's fur and cause other patterns, such as white spotting.

Body Pattern | A (Agouti) Locus | Gene: Agouti Signalling Protein (ASIP) | Genetic Result: a^ta^t

This gene is responsible for causing different coat patterns. It only affects the fur of dogs that do not have **ee** at the E (Extension) Locus and do have **k^yk^y** at the K (Dominant Black) Locus. It controls switching between black and red pigment in hair cells, which means that it can cause a dog to have hairs that have sections of black and sections of red/cream, or hairs with different colors on different parts of the dog's body. Sable or Fawn dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti or Wolf Sable dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

Did You Know? The ASIP gene causes interesting coat patterns in many other species of animals as well as dogs.

Facial Fur Pattern | E (Extension) Locus | Gene: Melanocortin Receptor 1 (MC1R) | Genetic Result: ee

In addition to determining if a dog can develop dark fur at all, this gene can give a dog a black "mask" or "widow's peak," unless the dog has overriding coat color genetic factors. Dogs with one or two copies of \mathbf{E}^{m} in their result will have a mask, which is dark facial fur as seen in the German Shepherd and Pug. Dogs with no \mathbf{E}^{m} in their result but one or two copies of \mathbf{E}^{g} will instead have a "widow's peak", which is dark forehead fur.

Did You Know? The widow's peak is seen in the Afghan Hound and Borzoi, where it is called either "grizzle" or "domino".

Registration:

Test Date: May 19th, 2023

embk.me/benny2460

RESULT

TRAITS: COAT COLOR MODIFIERS (CONTINUED)

TRAIT

Saddle Tan | Gene: RALY | Genetic Result: II

The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Beagle, and German Shepherd. Dogs that have the **II** genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus **a**^t allele, so dogs that do not express **a**^t are not influenced by this gene.

Did You Know? The Saddle Tan pattern is characteristic of breeds like the Corgi, Beagle, and German Shepherd.

White Spotting | S (White Spotting) Locus | Gene: MITF | Genetic Result: SS

This gene is responsible for most of the white spotting observed in dogs. Dogs with a result of **spsp** will have a nearly white coat or large patches of white in their coat. Dogs with a result of **Ssp** will have more limited white spotting that is breed-dependent. A result of **Ss** means that a dog likely has no white or minimal white in their coat. The S Locus does not explain all white spotting patterns in dogs and other causes are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their result at this gene.

Did You Know? Any dog can have white spotting regardless of coat color. The colored sections of the coat will reflect the dog's other genetic coat color results.

Roan LINKAGE | R (Roan) Locus | Gene: USH2A | Genetic Result: rr

This gene, along with the S Locus, regulates whether a dog will have roaning. Dogs with at least one copy of **R** will likely have roaning on otherwise uniformly unpigmented white areas created by the S Locus. Roan may not be visible if white spotting is limited to small areas, such as the paws, chest, face, or tail. The extent of roaning varies from uniform roaning to non-uniform roaning, and patchy, non-uniform roaning may look similar to ticking. Roan does not appear in white areas created by other genes, such as a combination of the E Locus and I Locus (for example, Samoyeds). The roan pattern can appear with or without ticking.

Likely no impact on coat pattern

Did You Know? Roan, tick, and Dalmatians' spots become visible a few weeks after birth. The R Locus is probably involved in the development of Dalmatians' spots.

No impact on coat pattern

Likely to have little to no white in coat

Registration:

Test Date: May 19th, 2023

embk.me/benny2460

RESULT

TRAITS: COAT COLOR MODIFIERS (CONTINUED)

TRAIT

Merle | M (Merle) Locus | Gene: PMEL | Genetic Result: mm

This gene is responsible for mottled or patchy coat color in some dogs. Dogs with an **M*m** result are likely to appear merle or could be "non-expressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an **M*M*** result are likely to have merle or double merle coat patterning. Dogs with an **mm** result are unlikely to have a merle coat pattern.

Did You Know? Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog.

Harlequin | Gene: PSMB | Genetic Result: hh

This gene, along with the M Locus, determines whether a dog will have harlequin patterning. This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin.

Did You Know? While many harlequin dogs are white with black patches, some dogs have grey, sable, or brindle patches of color, depending on their genotypes at other coat color genes.

No impact on coat color

No impact on coat pattern

Test Date: May 19th, 2023

embk.me/benny2460

TRAITS: OTHER COAT TRAITS

RESULT
ly furnished stache, beard, ⁄or eyebrows)
ly long coat
ly light shedding
ly wavy coat

Did You Know? Dogs with short coats may have straight coats, whatever result they have for this gene.

Hairlessness (Xolo type) LINKAGE | Gene: FOXI3 | Genetic Result: NN

Registration:

Test Date: May 19th, 2023

embk.me/benny2460

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Hairlessness (Terrier type) | Gene: SGK3 | Genetic Result: NN

This gene is responsible for Hairlessness in the American Hairless Terrier. Dogs with the DD result are likely to be hairless. Dogs with the ND genotype will have a normal coat, but can pass the D variant on to their offspring.

Oculocutaneous Albinism Type 2 LINKAGE | Gene: SLC45A2 | Genetic Result: NN

This gene causes oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism. Dogs with a **DD** result will have OCA. Effects include severely reduced or absent pigment in the eyes, skin, and hair, and sometimes vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a **ND** result will not be affected, but can pass the mutation on to their offspring. We measure this result using a linkage test.

Did You Know? This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual.

Registration:

Test Date: May 19th, 2023

embk.me/benny2460

Likely medium or long

muzzle

tail

RESULT

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length | Gene: BMP3 | Genetic Result: CC

This gene affects muzzle length. A dog with a AC or CC result is likely to have a medium-length muzzle like a Staffordshire Terrier or Labrador, or a long muzzle like a Whippet or Collie. A dog with a AA result is likely to have a short muzzle, like an English Bulldog, Pug, or Pekingese.

Did You Know? At least five different genes affect snout length in dogs, with BMP3 being the only one with a known causal mutation. For example, the muzzle length of some breeds, including the long-snouted Scottish Terrier or the short-snouted Japanese Chin, appear to be caused by other genes. This means your dog may have a long or short snout due to other genetic factors. Embark is working to figure out what these might be.

Tail Length | Gene: T | Genetic Result: CC

This is one of the genes that can cause a short bobtail. Most dogs have a CC result and a long tail. Dogs with a CG result are likely to have a bobtail, which is an unusually short or absent tail. This can be seen in many "natural bobtail" breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with GG genotypes have not been observed, suggesting that dogs with such a result Likely normal-length do not survive to birth.

Did You Know? While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, it is not always caused by this gene. This suggests that other unknown genetic effects can also lead to a natural bobtail.

Hind Dew Claws | Gene: LMBR1 | Genetic Result: CC

This is one of the genes that can cause hind dew claws, which are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with a CT or TT result have about a 50% chance of having hind dewclaws. Hind dew claws can also be caused by other, still unknown, genes. Embark is working to figure those out.

Unlikely to have hind dew claws

Did You Know? Hind dew claws are commonly found in certain breeds such as the Saint Bernard.

Registration:

Test Date: May 19th, 2023

embk.me/benny2460

RESULT

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

Back Muscling & Bulk (Large Breed) | Gene: ACSL4 | Genetic Result: CC

This gene can cause heavy muscling along the back and trunk in characteristically "bulky" large-breed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. A dog with the **TT** result is likely to have heavy muscling. Leaner-shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound generally have a **CC** result. The **TC** result also indicates likely normal muscling.

Did You Know? This gene does not seem to affect muscling in small or even mid-sized dog breeds with lots of back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

Eye Color LINKAGE | Gene: ALX4 | Genetic Result: NN

This gene is associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (nonmerle) Australian Shepherds. Dogs with a **DupDup** or **NDup** result are more likely to have blue eyes, although some dogs may have only one blue eye or may not have blue eyes at all; nevertheless, they can still pass blue eyes to their offspring. Dogs with a **NN** result may have blue eyes due to other factors, such as merle or white spotting. We measure this result using a linkage test.

Did You Know? Embark researchers discovered this gene by studying data from dogs like yours. Who knows what we will be able to discover next? Answer the questions on our research surveys to contribute to future discoveries!

Likely normal muscling

Less likely to have blue eyes

Test Date: May 19th, 2023

embk.me/benny2460

TRAITS: BODY SIZE

TRAIT	RESULT
Body Size 1 Gene: IGF1 Genetic Result: NI This is one of several genes that influence the size of a dog. A result of II for this gene is associated with smaller body size. A result of NN is associated with larger body size.	mediate
Body Size 2 Gene: IGFR1 Genetic Result: GG This is one of several genes that influence the size of a dog. A result of AA for this gene is associated with smaller body size. A result of GG is associated with larger body size.	er
Body Size 3 Gene: STC2 Genetic Result: TT This is one of several genes that influence the size of a dog. A result of AA for this gene is associated with smaller body size. A result of TT is associated with larger body size.	er
Body Size 4 Gene: GHR - E191K Genetic Result: GG This is one of several genes that influence the size of a dog. A result of AA for this gene is associated with smaller body size. A result of GG is associated with larger body size.	er
Body Size 5 Gene: GHR - P177L Genetic Result: CC This is one of several genes that influence the size of a dog. A result of TT for this gene is associated with smaller body size. A result of CC is associated with larger body size.	er

Test Date: May 19th, 2023

embk.me/benny2460

Normal altitude

tolerance

Normal food motivation

RESULT

TRAITS: PERFORMANCE

TRAIT

Altitude Adaptation | Gene: EPAS1 | Genetic Result: GG

This gene causes dogs to be especially tolerant of low oxygen environments, such as those found at high elevations. Dogs with a **AA** or **GA** result will be less susceptible to "altitude sickness."

Did You Know? This gene was originally identified in breeds from high altitude areas such as the Tibetan Mastiff.

Appetite LINKAGE | Gene: POMC | Genetic Result: NN

This gene influences eating behavior. An **ND** or **DD** result would predict higher food motivation compared to **NN** result, increasing the likelihood to eat excessively, have higher body fat percentage, and be more prone to obesity. Read more about the genetics of POMC, and learn how you can contribute to research, in our blog post (https://embarkvet.com/resources/blog/pomc-dogs/). We measure this result using a linkage test.

Did You Know? POMC is actually short for "proopiomelanocortin," and is a large protein that is broken up into several smaller proteins that have biological activity. The smaller proteins generated from POMC control, among other things, distribution of pigment to the hair and skin cells, appetite, and energy expenditure.

Test Date: May 19th, 2023

embk.me/benny2460

HEALTH REPORT

How to interpret Benny's genetic health results:

If Benny inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Benny for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

Summary

Benny is not at increased risk for the genetic health conditions that Embark tests.

Clear results

Breed-relevant (16)

Other (239)

Test Date: May 19th, 2023

embk.me/benny2460

BREED-RELEVANT RESULTS

Research studies indicate that these results are more relevant to dogs like Benny, and may influence his chances of developing certain health conditions.

Congenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant)	Clear
Degenerative Myelopathy, DM (SOD1A)	Clear
Opstrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant)	Clear
GM2 Gangliosidosis (HEXB, Poodle Variant)	Clear
Golden Retriever Progressive Retinal Atrophy 1, GR-PRA1 (SLC4A3)	Clear
Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2 (TTC8)	Clear
Ichthyosis, ICH1 (PNPLA1, Golden Retriever Variant)	Clear
Intervertebral Disc Disease (Type I) (FGF4 retrogene - CFA12)	Clear
Muscular Dystrophy (DMD, Golden Retriever Variant)	Clear
Neonatal Encephalopathy with Seizures, NEWS (ATF2)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 Deletion, Golden Retriever Variant)	Clear
Osteochondrodysplasia (SLC13A1, Poodle Variant)	Clear
Osteogenesis Imperfecta (COL1A1, Golden Retriever Variant)	Clear
Progressive Retinal Atrophy, prcd (PRCD Exon 1)	Clear
Retina Dysplasia and/or Optic Nerve Hypoplasia (SIX6 Exon 1, Golden Retriever Variant)	Clear

Registration: N/A

Test Date: May 19th, 2023

embk.me/benny2460

OTHER RESULTS

Research has not yet linked these conditions to dogs with similar breeds to Benny. Review any increased risk or notable results to understand his potential risk and recommendations.

2-DHA Kidney & Bladder Stones (APRT)	Clear
Acral Mutilation Syndrome (GDNF-AS, Spaniel and Pointer Variant)	Clear
Alaskan Husky Encephalopathy (SLC19A3)	Clear
Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)	Clear
Alexander Disease (GFAP)	Clear
ALT Activity (GPT)	Clear
Anhidrotic Ectodermal Dysplasia (EDA Intron 8)	Clear
Autosomal Dominant Progressive Retinal Atrophy (RHO)	Clear
Bald Thigh Syndrome (IGFBP5)	Clear
Bernard-Soulier Syndrome, BSS (GP9, Cocker Spaniel Variant)	Clear
Bully Whippet Syndrome (MSTN)	Clear
Canine Elliptocytosis (SPTB Exon 30)	Clear
Canine Fucosidosis (FUCA1)	Clear
Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)	Clear
Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)	Clear
Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)	Clear
Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)	Clear
Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund, Lapponian Herder Variant)	Clear

Test Date: May 19th, 2023

embk.me/benny2460

OTHER RESULTS

Canine Multiple System Degeneration (SERAC1 Exon 4, Chinese Crested Variant)	Clear
Canine Multiple System Degeneration (SERAC1 Exon 15, Kerry Blue Terrier Variant)	Clear
Cardiomyopathy and Juvenile Mortality (YARS2)	Clear
Centronuclear Myopathy, CNM (PTPLA)	Clear
Cerebellar Hypoplasia (VLDLR, Eurasier Variant)	Clear
Chondrodystrophy (ITGA10, Norwegian Elkhound and Karelian Bear Dog Variant)	Clear
Cleft Lip and/or Cleft Palate (ADAMTS20, Nova Scotia Duck Tolling Retriever Variant)	Clear
Cleft Palate, CP1 (DLX6 intron 2, Nova Scotia Duck Tolling Retriever Variant)	Clear
Cobalamin Malabsorption (CUBN Exon 8, Beagle Variant)	Clear
Cobalamin Malabsorption (CUBN Exon 53, Border Collie Variant)	Clear
Collie Eye Anomaly (NHEJ1)	Clear
Complement 3 Deficiency, C3 Deficiency (C3)	Clear
Congenital Cornification Disorder (NSDHL, Chihuahua Variant)	Clear
Congenital Hypothyroidism (TPO, Rat, Toy, Hairless Terrier Variant)	Clear
Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant)	Clear
Congenital Hypothyroidism with Goiter (TPO Intron 13, French Bulldog Variant)	Clear
Congenital Hypothyroidism with Goiter (SLC5A5, Shih Tzu Variant)	Clear
Congenital Macrothrombocytopenia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant)	Clear

Registration: N/A

Test Date: May 19th, 2023

embk.me/benny2460

OTHER RESULTS

Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant)	Clear
Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant)	Clear
Congenital Myasthenic Syndrome, CMS (CHRNE, Jack Russell Terrier Variant)	Clear
Congenital Stationary Night Blindness (LRIT3, Beagle Variant)	Clear
Congenital Stationary Night Blindness (RPE65, Briard Variant)	Clear
Craniomandibular Osteopathy, CMO (SLC37A2)	Clear
Craniomandibular Osteopathy, CMO (SLC37A2 Intron 16, Basset Hound Variant)	Clear
Cystinuria Type I-A (SLC3A1, Newfoundland Variant)	Clear
Cystinuria Type II-A (SLC3A1, Australian Cattle Dog Variant)	Clear
Cystinuria Type II-B (SLC7A9, Miniature Pinscher Variant)	Clear
Oay Blindness (CNGB3 Deletion, Alaskan Malamute Variant)	Clear
Day Blindness (CNGA3 Exon 7, German Shepherd Variant)	Clear
Day Blindness (CNGA3 Exon 7, Labrador Retriever Variant)	Clear
Day Blindness (CNGB3 Exon 6, German Shorthaired Pointer Variant)	Clear
Deafness and Vestibular Syndrome of Dobermans, DVDob, DINGS (MY07A)	Clear
Demyelinating Polyneuropathy (SBF2/MTRM13)	Clear
O Dental-Skeletal-Retinal Anomaly (MIA3, Cane Corso Variant)	Clear
O Diffuse Cystic Renal Dysplasia and Hepatic Fibrosis (INPP5E Intron 9, Norwich Terrier Variant)	Clear

Registration: N/A

Test Date: May 19th, 2023

embk.me/benny2460

OTHER RESULTS

Dilated Cardiomyopathy, DCM (RBM20, Schnauzer Variant)	Clear
O Dilated Cardiomyopathy, DCM1 (PDK4, Doberman Pinscher Variant 1)	Clear
O Dilated Cardiomyopathy, DCM2 (TTN, Doberman Pinscher Variant 2)	Clear
Disproportionate Dwarfism (PRKG2, Dogo Argentino Variant)	Clear
Ory Eye Curly Coat Syndrome (FAM83H Exon 5)	Clear
Opstrophic Epidermolysis Bullosa (COL7A1, Central Asian Shepherd Dog Variant)	Clear
Early Bilateral Deafness (LOXHD1 Exon 38, Rottweiler Variant)	Clear
Early Onset Adult Deafness, EOAD (EPS8L2 Deletion, Rhodesian Ridgeback Variant)	Clear
Early Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant)	Clear
Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant)	Clear
Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant)	Clear
Enamel Hypoplasia (ENAM SNP, Parson Russell Terrier Variant)	Clear
Episodic Falling Syndrome (BCAN)	Clear
Exercise-Induced Collapse, EIC (DNM1)	Clear
Factor VII Deficiency (F7 Exon 5)	Clear
Sector XI Deficiency (F11 Exon 7, Kerry Blue Terrier Variant)	Clear
Familial Nephropathy (COL4A4 Exon 3, Cocker Spaniel Variant)	Clear
Familial Nephropathy (COL4A4 Exon 30, English Springer Spaniel Variant)	Clear

Registration: N/A

Test Date: May 19th, 2023

embk.me/benny2460

OTHER RESULTS

Sanconi Syndrome (FAN1, Basenji Variant)	Clear
Setal-Onset Neonatal Neuroaxonal Dystrophy (MFN2, Giant Schnauzer Variant)	Clear
Glanzmann's Thrombasthenia Type I (ITGA2B Exon 13, Great Pyrenees Variant)	Clear
Glanzmann's Thrombasthenia Type I (ITGA2B Exon 12, Otterhound Variant)	Clear
Globoid Cell Leukodystrophy, Krabbe disease (GALC Exon 5, Terrier Variant)	Clear
Glycogen Storage Disease Type IA, Von Gierke Disease, GSD IA (G6PC, Maltese Variant)	Clear
Glycogen Storage Disease Type IIIA, GSD IIIA (AGL, Curly Coated Retriever Variant)	Clear
 Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Whippet and English Springer Spaniel Variant) 	Clear
 Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Wachtelhund Variant) 	Clear
GM1 Gangliosidosis (GLB1 Exon 2, Portuguese Water Dog Variant)	Clear
GM1 Gangliosidosis (GLB1 Exon 15, Shiba Inu Variant)	Clear
🧭 GM1 Gangliosidosis (GLB1 Exon 15, Alaskan Husky Variant)	Clear
GM2 Gangliosidosis (HEXA, Japanese Chin Variant)	Clear
Goniodysgenesis and Glaucoma, Pectinate Ligament Dysplasia, PLD (OLFM3)	Clear
Hemophilia A (F8 Exon 11, German Shepherd Variant 1)	Clear
Hemophilia A (F8 Exon 1, German Shepherd Variant 2)	Clear
Hemophilia A (F8 Exon 10, Boxer Variant)	Clear
Hemophilia B (F9 Exon 7, Terrier Variant)	Clear

Test Date: May 19th, 2023

embk.me/benny2460

OTHER RESULTS

Hemophilia B (F9 Exon 7, Rhodesian Ridgeback Variant)	Clear
Hereditary Ataxia, Cerebellar Degeneration (RAB24, Old English Sheepdog and Gordon Setter Variant)	Clear
Hereditary Cataracts (HSF4 Exon 9, Australian Shepherd Variant)	Clear
Hereditary Footpad Hyperkeratosis (FAM83G, Terrier and Kromfohrlander Variant)	Clear
Hereditary Footpad Hyperkeratosis (DSG1, Rottweiler Variant)	Clear
Hereditary Nasal Parakeratosis (SUV39H2 Intron 4, Greyhound Variant)	Clear
Hereditary Nasal Parakeratosis, HNPK (SUV39H2)	Clear
Hereditary Vitamin D-Resistant Rickets (VDR)	Clear
Hypocatalasia, Acatalasemia (CAT)	Clear
Hypomyelination and Tremors (FNIP2, Weimaraner Variant)	Clear
Hypophosphatasia (ALPL Exon 9, Karelian Bear Dog Variant)	Clear
Ichthyosis (NIPAL4, American Bulldog Variant)	Clear
Ichthyosis (ASPRV1 Exon 2, German Shepherd Variant)	Clear
Ichthyosis (SLC27A4, Great Dane Variant)	Clear
O Ichthyosis, Epidermolytic Hyperkeratosis (KRT10, Terrier Variant)	Clear
Inflammatory Myopathy (SLC25A12)	Clear
Inherited Myopathy of Great Danes (BIN1)	Clear
Inherited Selected Cobalamin Malabsorption with Proteinuria (CUBN, Komondor Variant)	Clear

Registration: N/A

Test Date: May 19th, 2023

embk.me/benny2460

OTHER RESULTS

Intestinal Lipid Malabsorption (ACSL5, Australian Kelpie)	Clear
Junctional Epidermolysis Bullosa (LAMA3 Exon 66, Australian Cattle Dog Variant)	Clear
Junctional Epidermolysis Bullosa (LAMB3 Exon 11, Australian Shepherd Variant)	Clear
Juvenile Epilepsy (LGI2)	Clear
Juvenile Laryngeal Paralysis and Polyneuropathy (RAB3GAP1, Rottweiler Variant)	Clear
Juvenile Myoclonic Epilepsy (DIRAS1)	Clear
Contemporaries L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH, Staffordshire Bull Terrier Variant)	Clear
Lagotto Storage Disease (ATG4D)	Clear
Laryngeal Paralysis (RAPGEF6, Miniature Bull Terrier Variant)	Clear
Late Onset Spinocerebellar Ataxia (CAPN1)	Clear
Late-Onset Neuronal Ceroid Lipofuscinosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant)	Clear
Leonberger Polyneuropathy 1 (LPN1, ARHGEF10)	Clear
Control Leonberger Polyneuropathy 2 (GJA9)	Clear
C Lethal Acrodermatitis, LAD (MKLN1)	Clear
Leukodystrophy (TSEN54 Exon 5, Standard Schnauzer Variant)	Clear
Ligneous Membranitis, LM (PLG)	Clear
Limb Girdle Muscular Dystrophy (SGCD, Boston Terrier Variant)	Clear
C Limb-Girdle Muscular Dystrophy 2D (SGCA Exon 3, Miniature Dachshund Variant)	Clear

Registration: N/A

Test Date: May 19th, 2023

embk.me/benny2460

OTHER RESULTS

Long QT Syndrome (KCNQ1)	Clear
Lundehund Syndrome (LEPREL1)	Clear
Macular Corneal Dystrophy, MCD (CHST6)	Clear
Malignant Hyperthermia (RYR1)	Clear
May-Hegglin Anomaly (MYH9)	Clear
Methemoglobinemia (CYB5R3, Pit Bull Terrier Variant)	Clear
Methemoglobinemia (CYB5R3)	Clear
Microphthalmia (RBP4 Exon 2, Soft Coated Wheaten Terrier Variant)	Clear
Mucopolysaccharidosis IIIB, Sanfilippo Syndrome Type B, MPS IIIB (NAGLU, Schipperke Variant)	Clear
Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, Dachshund Variant)	Clear
Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, New Zealand Huntaway Variant)	Clear
Mucopolysaccharidosis Type VI, Maroteaux-Lamy Syndrome, MPS VI (ARSB Exon 5, Miniature Pinscher Variant)	Clear
Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 3, German Shepherd Variant)	Clear
Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 5, Terrier Brasileiro Variant)	Clear
Multiple Drug Sensitivity (ABCB1)	Clear
Muscular Dystrophy (DMD, Cavalier King Charles Spaniel Variant 1)	Clear
Musladin-Lueke Syndrome, MLS (ADAMTSL2)	Clear
Myasthenia Gravis-Like Syndrome (CHRNE, Heideterrier Variant)	Clear

Test Date: May 19th, 2023

embk.me/benny2460

OTHER RESULTS

Myotonia Congenita (CLCN1 Exon 23, Australian Cattle Dog Variant)	Clear
Myotonia Congenita (CLCN1 Exon 7, Miniature Schnauzer Variant)	Clear
Narcolepsy (HCRTR2 Exon 1, Dachshund Variant)	Clear
Narcolepsy (HCRTR2 Intron 4, Doberman Pinscher Variant)	Clear
Narcolepsy (HCRTR2 Intron 6, Labrador Retriever Variant)	Clear
Nemaline Myopathy (NEB, American Bulldog Variant)	Clear
Neonatal Cerebellar Cortical Degeneration (SPTBN2, Beagle Variant)	Clear
Neonatal Interstitial Lung Disease (LAMP3)	Clear
Neuroaxonal Dystrophy, NAD (VPS11, Rottweiler Variant)	Clear
Neuroaxonal Dystrophy, NAD (TECPR2, Spanish Water Dog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PPT1 Exon 8, Dachshund Variant 1)	Clear
Neuronal Ceroid Lipofuscinosis 10, NCL 10 (CTSD Exon 5, American Bulldog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPP1 Exon 4, Dachshund Variant 2)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 SNP, Border Collie Variant)	Clear
Neuronal Ceroid Lipofuscinosis 6, NCL 6 (CLN6 Exon 7, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscinosis 7, NCL 7 (MFSD8, Chihuahua and Chinese Crested Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 Exon 2, English Setter Variant)	Clear

Registration: N/A

Test Date: May 19th, 2023

embk.me/benny2460

OTHER RESULTS

Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 Insertion, Saluki Variant)	Clear
Neuronal Ceroid Lipofuscinosis, Cerebellar Ataxia, NCL4A (ARSG Exon 2, American Staffordshire Terrier Variant)	Clear
Oculocutaneous Albinism, OCA (SLC45A2 Exon 6, Bullmastiff Variant)	Clear
Oculocutaneous Albinism, OCA (SLC45A2, Small Breed Variant)	Clear
Oculoskeletal Dysplasia 2 (COL9A2, Samoyed Variant)	Clear
Osteogenesis Imperfecta (COL1A2, Beagle Variant)	Clear
Osteogenesis Imperfecta (SERPINH1, Dachshund Variant)	Clear
P2Y12 Receptor Platelet Disorder (P2Y12)	Clear
Pachyonychia Congenita (KRT16, Dogue de Bordeaux Variant)	Clear
Paroxysmal Dyskinesia, PxD (PIGN)	Clear
Persistent Mullerian Duct Syndrome, PMDS (AMHR2)	Clear
Pituitary Dwarfism (POU1F1 Intron 4, Karelian Bear Dog Variant)	Clear
Platelet Factor X Receptor Deficiency, Scott Syndrome (TMEM16F)	Clear
Polycystic Kidney Disease, PKD (PKD1)	Clear
Pompe's Disease (GAA, Finnish and Swedish Lapphund, Lapponian Herder Variant)	Clear
Prekallikrein Deficiency (KLKB1 Exon 8)	Clear
Primary Ciliary Dyskinesia, PCD (NME5, Alaskan Malamute Variant)	Clear
Primary Ciliary Dyskinesia, PCD (CCDC39 Exon 3, Old English Sheepdog Variant)	Clear

Registration: N/A

Test Date: May 19th, 2023

embk.me/benny2460

OTHER RESULTS

Primary Hyperoxaluria (AGXT)	Clear
Primary Lens Luxation (ADAMTS17)	Clear
Primary Open Angle Glaucoma (ADAMTS17 Exon 11, Basset Fauve de Bretagne Variant)	Clear
Primary Open Angle Glaucoma (ADAMTS10 Exon 17, Beagle Variant)	Clear
Primary Open Angle Glaucoma (ADAMTS10 Exon 9, Norwegian Elkhound Variant)	Clear
 Primary Open Angle Glaucoma and Primary Lens Luxation (ADAMTS17 Exon 2, Chinese Shar-Pei Variant) 	Clear
Progressive Retinal Atrophy (SAG)	Clear
Progressive Retinal Atrophy (IFT122 Exon 26, Lapponian Herder Variant)	Clear
Progressive Retinal Atrophy, Bardet-Biedl Syndrome (BBS2 Exon 11, Shetland Sheepdog Variant)	Clear
Progressive Retinal Atrophy, CNGA (CNGA1 Exon 9)	Clear
Progressive Retinal Atrophy, crd1 (PDE6B, American Staffordshire Terrier Variant)	Clear
Progressive Retinal Atrophy, crd4/cord1 (RPGRIP1)	Clear
Progressive Retinal Atrophy, PRA1 (CNGB1)	Clear
Progressive Retinal Atrophy, PRA3 (FAM161A)	Clear
Progressive Retinal Atrophy, rcd1 (PDE6B Exon 21, Irish Setter Variant)	Clear
Progressive Retinal Atrophy, rcd3 (PDE6A)	Clear
Proportionate Dwarfism (GH1 Exon 5, Chihuahua Variant)	Clear
Protein Losing Nephropathy, PLN (NPHS1)	Clear

Registration: N/A

Test Date: May 19th, 2023

embk.me/benny2460

OTHER RESULTS

Pyruvate Dehydrogenase Deficiency (PDP1, Spaniel Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 5, Basenji Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7, Beagle Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 10, Terrier Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7, Labrador Retriever Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7, Pug Variant)	Clear
Raine Syndrome (FAM20C)	Clear
Recurrent Inflammatory Pulmonary Disease, RIPD (AKNA, Rough Collie Variant)	Clear
Renal Cystadenocarcinoma and Nodular Dermatofibrosis (FLCN Exon 7)	Clear
Sensory Neuropathy (FAM134B, Border Collie Variant)	Clear
Severe Combined Immunodeficiency, SCID (PRKDC, Terrier Variant)	Clear
Severe Combined Immunodeficiency, SCID (RAG1, Wetterhoun Variant)	Clear
Shaking Puppy Syndrome (PLP1, English Springer Spaniel Variant)	Clear
Shar-Pei Autoinflammatory Disease, SPAID, Shar-Pei Fever (MTBP)	Clear
Skeletal Dysplasia 2, SD2 (COL11A2, Labrador Retriever Variant)	Clear
Skin Fragility Syndrome (PKP1, Chesapeake Bay Retriever Variant)	Clear
Spinocerebellar Ataxia (SCN8A, Alpine Dachsbracke Variant)	Clear
Spinocerebellar Ataxia with Myokymia and/or Seizures (KCNJ10)	Clear

Registration: N/A

Test Date: May 19th, 2023

embk.me/benny2460

OTHER RESULTS

Spongy Degeneration with Cerebellar Ataxia 1 (KCNJ10)	Clear
Spongy Degeneration with Cerebellar Ataxia 2 (ATP1B2)	Clear
Stargardt Disease (ABCA4 Exon 28, Labrador Retriever Variant)	Clear
Succinic Semialdehyde Dehydrogenase Deficiency (ALDH5A1 Exon 7, Saluki Variant)	Clear
O Thrombopathia (RASGRP1 Exon 5, American Eskimo Dog Variant)	Clear
O Thrombopathia (RASGRP1 Exon 5, Basset Hound Variant)	Clear
Thrombopathia (RASGRP1 Exon 8, Landseer Variant)	Clear
Trapped Neutrophil Syndrome, TNS (VPS13B)	Clear
O Ullrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant)	Clear
O Ullrich-like Congenital Muscular Dystrophy (COL6A1 Exon 3, Landseer Variant)	Clear
Unilateral Deafness and Vestibular Syndrome (PTPRQ Exon 39, Doberman Pinscher)	Clear
Urate Kidney & Bladder Stones (SLC2A9)	Clear
Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant)	Clear
✓ Von Willebrand Disease Type III, Type III vWD (VWF Exon 4, Terrier Variant)	Clear
Von Willebrand Disease Type III, Type III vWD (VWF Intron 16, Nederlandse Kooikerhondje Variant)	Clear
Von Willebrand Disease Type III, Type III vWD (VWF Exon 7, Shetland Sheepdog Variant)	Clear
X-Linked Hereditary Nephropathy, XLHN (COL4A5 Exon 35, Samoyed Variant 2)	Clear
X-Linked Myotubular Myopathy (MTM1, Labrador Retriever Variant)	Clear

Registration: N/A

Test Date: May 19th, 2023

embk.me/benny2460

OTHER RESULTS

X-Linked Progressive Retinal Atrophy 1, XL-PRA1 (RPGR)	Clear
X-linked Severe Combined Immunodeficiency, X-SCID (IL2RG Exon 1, Basset Hound Variant)	Clear
X-linked Severe Combined Immunodeficiency, X-SCID (IL2RG, Corgi Variant)	Clear
Xanthine Urolithiasis (XDH, Mixed Breed Variant)	Clear
β-Mannosidosis (MANBA Exon 16, Mixed-Breed Variant)	Clear
Mast Cell Tumor	No result

Registration: N/A

Test Date: May 19th, 2023

embk.me/benny2460

RESULT

embark

INBREEDING AND DIVERSITY

CATEGORY

Inbreeding | Gene: n/a | Genetic Result: 1%

Inbreeding is a measure of how closely related this dog's parents were. The higher the number, the more closely related the parents. In general, greater inbreeding is associated with increased incidence of genetically inherited conditions.

Immune Response 1 | Gene: DRB1 | Genetic Result: High Diversity

Diversity in the Major Histocompatibility Complex (MHC) region of the genome has been found in some studies to be associated with the incidence of certain autoimmune diseases. Dogs that have less diversity in the MHC region—i.e. the Dog Leukocyte Antigen (DLA) inherited from the mother is similar to the DLA inherited from the father—are considered less immunologically diverse. A High Diversity result means the dog has two highly dissimilar haplotypes. A Low Diversity result means the dog has two similar but not identical haplotypes. A No Diversity result means the dog has inherited identical haplotypes from both parents. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Cushing's disease, but these findings have yet to be scientifically validated.

Immune Response 2 | Gene: DQA1 and DQB1 | Genetic Result: High Diversity

Diversity in the Major Histocompatibility Complex (MHC) region of the genome has been found in some studies to be associated with the incidence of certain autoimmune diseases. Dogs that have less diversity in the MHC region—i.e. the Dog Leukocyte Antigen (DLA) inherited from the mother is similar to the DLA inherited from the father—are considered less immunologically diverse. A High Diversity result means the dog has two highly dissimilar haplotypes. A Low Diversity result means the dog has two similar but not identical haplotypes. A No Diversity result means the dog has inherited identical haplotypes from both parents. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.

High Diversity

1%

How common is this amount of diversity in mixed breed dogs:

High Diversity

How common is this amount of diversity in mixed breed dogs:

